10 research outputs found

    Extracellular Vesicles in Hepatobiliary Malignancies

    Get PDF
    Primary hepatobiliary malignancies include a heterogeneous group of cancers with dismal prognosis, among which hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and hepatoblastoma (HB) stand out. These tumors mainly arise from the malignant transformation of hepatocytes, cholangiocytes (bile duct epithelial cells) or hepatoblasts (embryonic liver progenitor cells), respectively. Early diagnosis, prognosis prediction and effective therapies are still a utopia for these diseases. Extracellular vesicles (EVs) are small membrane-enclosed spheres secreted by cells and present in biological fluids. They contain multiple types of biomolecules, such as proteins, RNA, DNA, metabolites and lipids, which make them a potential source of biomarkers as well as regulators of human pathobiology. In this review, the role of EVs in the pathogenesis of hepatobiliary cancers and their potential usefulness as disease biomarkers are highlighted. Moreover, the therapeutic value of EV regulation is discussed and future directions on basic and clinical research are indicated.Spanish Ministries of Economy and Competitiveness [JB (FIS PI12/00380, FIS PI15/01132 and Miguel Servet Programme CON14/00129); MP (FIS PI14/00399, FIS PI17/00022) and Ramon y Cajal Programme RYC-2015-17755] cofinanced by Fondo Europeo de Desarrollo Regional (FEDER); ISCIII [CIBERehd: JB, LB, and MP], Spain; Diputacion Foral Gipuzkoa (JB: DFG15/010, DFG16/004), BIOEF (Basque Foundation for Innovation and Health Research: EiTB Maratoia BIO15/CA/016/BD to JB); Department of Health of the Basque Country (JB: 2013111173 and 2017111010; MP: 2015111100), and AECC Scientific Foundation (JB). AL and PO were funded by the Basque Government

    Inhibition of NAE-dependent protein hyper-NEDDylation in cystic cholangiocytes halts cystogenesis in experimental models of polycystic liver disease

    Get PDF
    Background Polycystic liver diseases (PLDs) are genetic inherited disorders characterized by the progressive growth of numerous intrahepatic biliary cysts, which are the main cause of morbidity. Previous studies revealed that cystic cholangiocytes are characterized by endoplasmic reticulum stress and aberrant posttranslational modification (PTM) of proteins, in particular hyper-SUMOylation, that promote PLD pathobiology. Protein NEDDylation is a newly characterized PTM that modulates a plethora of biological processes and its dysregulation is associated with the development and progression of several human diseases. However, the role of NEDDylation in PLD remains elusive. Objective To explore the role of protein NEDDylation in PLD and its potential therapeutic regulatory value. Methods Levels and functional effects of NEDDylation, including response to Pevonedistat (first-in-class selective inhibitor of the NEDDylation E1 enzyme NAE), were assessed in vitro, in vivo, and/or in patients with PLD. NEDDylated protein levels in normal and cystic human cholangiocytes were assessed by immunoprecipitation, and the proteomic profile was further analyzed by mass spectrometry. Results and Conclusion The genes involved in the NEDDylation pathway were found overexpressed (mRNA) in polycystic human and rat liver tissue, as well as in cystic cholangiocytes in culture, compared to controls. Elevated levels of NEDDylated proteins were further confirmed in cystic cholangiocytes in vitro, which diminished under Pevonedistat incubation. Pevonedistat promoted apoptotic cell death and reduced proliferation in cystic cholangiocytes in vitro. Comparative proteomic profiling of NEDD8-immunoprecipitated proteins between normal and cystic cholangiocytes in culture reported candidate proteins involved in cystogenesis, mostly associated with protein biogenesis and quality control. All these data indicate that cystic cholangiocytes display increased protein NEDDylation, contributing to cell survival and proliferation, ultimately supporting hepatic cystogenesis. Targeting of protein hyper-NEDDylation in cystic cholangiocytes inhibits cystogenesis in experimental models, representing a novel therapeutic opportunity in PLD.Spanish Carlos III Health Institute (ISCIII), Grant/Award Numbers: CON14/00129, CPII19/00008, FIS PI12/00380, FIS PI14/ 00399, FIS PI15/01132, FIS PI17/00022, FIS PI18/01075, FIS PI20/00186, Sara Borrell CD19/00254; Diputacion Foral de Gipuzkoa, Grant/Award Numbers: DFG15/010, DFG16/004; Department of Health of the Basque Country, Grant/Award Numbers: 2015111100, 2017111010, 2019111024; Euskadi RIS3, Grant/Award Numbers: 2016222001, 2017222014, 2018222029, 2019222054, 2020333010; Department of Industry of the Basque Country, Grant/Award Number: KK-2020/00008; Spanish Ministry of Economy and Competitiveness, Grant/Award Number: RYC-2015-17755; Ministerio de Ciencia, Innovacion y Universidades, Grant/ Award Number: SAF2017-87301-R; Ayudas para apoyar grupos de investigacion del Sistema Universitario Vasco, Grant/Award Number: IT971-16; Universita Politecnica delle Marche, Grant/Award Number: PSA2017_UNIVPM; European Association for the Study of the Liver, Grant/Award Number: Sheila Sherlock Award 2017; Spanish Ministry of Science and Innovation, Grant/Award Number: BES-2014-069148; Basque Government, Grant/Award Number: PRE_2016_1_0269; Basque Foundation for Innovation and Health Research, Grant/Award Number: BIO15/CA/016/BD; Fundacion Cientifica de la Asociacion Espanola Contra el Cancer; La Caixa Scientific Foundation, Grant/ Award Number: HR17-00601; CIBERehd; Fondo Europeo de Desarrollo Regional Documen

    Targeting UBC9-Mediated Protein Hyper-SUMOylation in Cystic Cholangiocytes Halts Polycystic Liver Disease in Experimental Models

    Get PDF
    BACKGROUND & AIMS: Polycystic liver diseases (PLDs) are genetic disorders characterized by progressive development of multiple fluid-filled biliary cysts. Most PLD-causative genes participate in protein biogenesis and/or transport. Post-translational modifications (PTMs) are implicated in protein stability, localization and activity, contributing to human pathobiology; however, their role in PLD is unknown. Herein, we aimed to unveil the role of protein SUMOylation in PLD and its potential therapeutic targeting. METHODS: Levels and functional effects of SUMOylation, along with response to S-adenosylmethionine (SAMe, inhibitor of the SUMOylation enzyme UBC9) and/or short-hairpin RNAs (shRNAs) against UBE2I (UBC9), were evaluated invitro, invivo and/or in patients with PLD. SUMOylated proteins were determined by immunoprecipitation and proteomic analyses by mass spectrometry. RESULTS: Most SUMOylation-related genes were found overexpressed (mRNA) in polycystic human and rat liver tissue, as well as in cystic cholangiocytes in culture compared to controls. Increased SUMOylated protein levels were also observed in cystic human cholangiocytes in culture, which decreased after SAMe administration. Chronic treatment of polycystic (PCK: Pkdh1-mut) rats with SAMe halted hepatic cystogenesis and fibrosis, and reduced liver/body weight ratio and liver volume. Invitro, both SAMe and shRNA-mediated UBE2I knockdown increased apoptosis and reduced cell proliferation of cystic cholangiocytes. High-throughput proteomic analysis of SUMO1-immunoprecipitated proteins in cystic cholangiocytes identified candidates involved in protein biogenesis, ciliogenesis and proteasome degradation. Accordingly, SAMe hampered proteasome hyperactivity in cystic cholangiocytes, leading to activation of the unfolded protein response and stress-related apoptosis. CONCLUSIONS: Cystic cholangiocytes exhibit increased SUMOylation of proteins involved in cell survival and proliferation, thus promoting hepatic cystogenesis. Inhibition of protein SUMOylation with SAMe halts PLD, representing a novel therapeutic strategy. LAY SUMMARY: Protein SUMOylation is a dynamic post-translational event implicated in numerous cellular processes. This study revealed dysregulated protein SUMOylation in polycystic liver disease, which promotes hepatic cystogenesis. Administration of S-adenosylmethionine (SAMe), a natural UBC9-dependent SUMOylation inhibitor, halted polycystic liver disease in experimental models, thus representing a potential therapeutic agent for patients.Spanish Carlos III Health Institute (ISCIII) [J.M. Banales (FIS PI12/00380, PI15/01132, PI18/01075 and Miguel Servet Program CON14/00129 and CPII19/00008); M.J. Perugorria (FIS PI14/00399, PI17/00022 and PI20/00186); P.M. Rodrigues (Sara Borrell CD19/00254)] cofinanced by “Fondo Europeo de Desarrollo Regional” (FEDER); Ministerio de Ciencia, Innovación y Universidades (MICINN; M.L. Martinez-Chantar: SAF2017-87301-R); “Instituto de Salud Carlos III” [CIBERehd: J.M. Banales, M.J. Perugorria, M.L. Martinez-Chantar and L. Bujanda], Spain; “Diputación Foral Gipuzkoa” (J.M. Banales: DFG15/010, DFG16/004), Department of Health of the Basque Country (M.J. Perugorria: 2019111024, 2015111100 and J.M. Banales: 2017111010), “Euskadi RIS3” (J.M. Banales: 2016222001, 2017222014, 2018222029, 2019222054, 2020333010), BIOEF (Basque Foundation for Innovation and Health Research: EiTB Maratoia BIO15/CA/016/BD to J.M. Banales and M.L. Martinez-Chantar) and Department of Industry of the Basque Country (J.M. Banales: Elkartek: KK-2020/00008). La Caixa Scientific Foundation (J.M. Banales and M.L. Martinez-Chantar: HR17-00601). “Fundación Científica de la Asociación Española Contra el Cáncer” (AECC Scientific Foundation, to J.M. Banales and M.L. Martinez-Chantar). “Ayudas para apoyar grupos de investigación del Sistema Universitario Vasco” (IT971-16 to P.A.). Università Politecnica delle Marche PSA2017_UNIVPM grant (to M. Marzioni). National Institutes of Health (NIH) of United States of America (DK24031 to N.F. LaRusso). MJ Perugorria was funded by the Spanish Ministry of Economy and Competitiveness (MINECO: “Ramón y Cajal” Program RYC-2015-17755), P.Y. Lee-Law by the European Association for the Study of the Liver (EASL; Sheila Sherlock Award 2017), F.J. Caballero-Camino by the Spanish Ministry of Science and Innovation (BES-2014-069148), and P. Olaizola and A. Santos-Laso by the Basque Government (PRE_2016_1_0269, PRE_2015_1_0126). We thank MINECO for the Severo Ochoa Excellence Accreditation to CIC bioGUNE (SEV-2016-0644). The funding sources had no involvement in study design, data collection and analysis, decision to publish, or preparation of the article

    FOSL1 promotes cholangiocarcinoma via transcriptional effectors that could be therapeutically targeted

    Get PDF
    [EN] Background & Aims: Cholangiocarcinoma (CCA) is a neoplasia of the biliary tract driven by genetic, epigenetic and transcriptional mechanisms. Herein, we investigated the role of the transcription factor FOSL1, as well as its downstream transcriptional effectors, in the development and progression of CCA. Methods: FOSL1 was investigated in human CCA clinical samples. Genetic inhibition of FOSL1 in human and mouse CCA cell lines was performed in in vitro and in vivo models using constitutive and inducible short-hairpin RNAs. Conditional FOSL1 ablation was done using a genetically engineered mouse (GEM) model of CCA (mutant KRAS and Trp53 knockout). Followup RNA and chromatin immunoprecipitation (ChIP) sequencing analyses were carried out and downstream targets were validated using genetic and pharmacological inhibition. Results: An inter-species analysis of FOSL1 in CCA was conducted. First, FOSL1 was found to be highly upregulated in human and mouse CCA, and associated with poor patient survival. Pharmacological inhibition of different signalling pathways in CCA cells converged on the regulation of FOSL1 expression. Functional experiments showed that FOSL1 is required for cell proliferation and cell cycle progression in vitro, and for tumour growth and tumour maintenance in both orthotopic and subcutaneous xenograft models. Likewise, FOSL1 genetic abrogation in a GEM model of CCA extended mouse survival by decreasing the oncogenic potential of transformed cholangiocytes. RNA and ChIP sequencing studies identified direct and indirect transcriptional effectors such as HMGCS1 and AURKA, whose genetic and pharmacological inhibition phenocopied FOSL1 loss. Conclusions: Our data illustrate the functional and clinical relevance of FOSL1 in CCA and unveil potential targets amenable to pharmacological inhibition that could enable the implementation of novel therapeutic strategies. Lay summary: Understanding the molecular mechanisms involved in cholangiocarcinoma (bile duct cancer) development and progression stands as a critical step for the development of novel therapies. Through an inter-species approach, this study provides evidence of the clinical and functional role of the transcription factor FOSL1 in cholangiocarcinoma. Moreover, we report that downstream effectors of FOSL1 are susceptible to pharmacological inhibition, thus providing new opportunities for therapeutic intervention.A.V. was supported by ADA of the University of Navarra, Spain, O.E. by FSE; MINECO; FJCI-2017-34233, Spain, R.E. by a donation from Mauge Burgos de la Iglesia’s family, Spain, and P. Olaizola by the Basque Government (PRE_2016_1_0269), Basque Country, Spain. M.J.P. was funded by ISCIII [FIS PI14; 00399, PI17; 00022] cofinanced by “Fondo Europeo de Desarrollo Regional” (FEDER), Spain; Spanish Ministry of Economy and Competitiveness (MINECO: “Ramón y Cajal” Program RYC-2015-17755), Spain. M.A.A was funded by La Caixa Foundation, HEPACARE project, Spain, ISCIII FIS PI16/01126 cofinanced by “Fondo Europeo de Desarrollo Regional” (FEDER), Spain, and “Fundación Científica de la Asociación Española Contra el Cáncer’’ (AECC Scientific Foundation) Rare Cancers 2017, Spain. J.M.B. was funded by the Spanish Carlos III Health Institute (ISCIII) (FIS PI15; 01132, PI18; 01075 and Miguel Servet Program CON14; 00129 and CPII19; 00008), Spain, co-financed by “Fondo Europeo de Desarrollo Regional” (FEDER), Spain; “Euskadi RIS3” (2019222054) and BIOEF (Basque Foundation for Innovation and Health Research: EiTB Maratoia BIO15; CA; 016; BD), Basque Country, Spain; “Fundación Científica de la Asociación Española Contra el Cáncer” (AECC Scientific Foundation) Rare Cancers 2017, Spain. S.V. was supported by FEDER; MINECO (SAF2017-89944-R), Spain, by the Government of Navarra-Health Research Department (58; 2018), Navarra, Spain, by La Caixa and Caja Navarra Foundation-CIMA agreement, Spain. None of the funding sources were involved in the decision to submit the article for publication. This article is based upon work from COST Action CA18122 European Cholangiocarcinoma Network, supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks (www.cost.eu)

    Synthetic Conjugates of Ursodeoxycholic Acid Inhibit Cystogenesis in Experimental Models of Polycystic Liver Disease

    Get PDF
    Background and Aims Polycystic liver diseases (PLDs) are genetic disorders characterized by progressive development of symptomatic biliary cysts. Current surgical and pharmacological approaches are ineffective, and liver transplantation represents the only curative option. Ursodeoxycholic acid (UDCA) and histone deacetylase 6 inhibitors (HDAC6is) have arisen as promising therapeutic strategies, but with partial benefits. Approach and Results Here, we tested an approach based on the design, synthesis, and validation of a family of UDCA synthetic conjugates with selective HDAC6i capacity (UDCA-HDAC6i). Four UDCA-HDAC6i conjugates presented selective HDAC6i activity, UDCA-HDAC6i #1 being the most promising candidate. UDCA orientation within the UDCA-HDAC6i structure was determinant for HDAC6i activity and selectivity. Treatment of polycystic rats with UDCA-HDAC6i #1 reduced their hepatomegaly and cystogenesis, increased UDCA concentration, and inhibited HDAC6 activity in liver. In cystic cholangiocytes UDCA-HDAC6i #1 restored primary cilium length and exhibited potent antiproliferative activity. UDCA-HDAC6i #1 was actively transported into cells through BA and organic cation transporters. Conclusions These UDCA-HDAC6i conjugates open a therapeutic avenue for PLDs.Supported by the Spanish Carlos III Health Institute (ISCIII; J.M. Banales: FIS PI15/01132, PI18/01075 and Miguel Servet Program CON14/00129; M.J. Perugorria: PI14/00399, PI17/00022; J.J.G. Marin: FIS PI16/00598) cofinanced by "Fondo Europeo de Desarrollo Regional" (FEDER); CIBERehd (ISCIII): J.M. Banales, M.J. Perugorria, L. Bujanda, and J.J.G. Marin; Spanish Ministry of Economy and Competitiveness (M. J. Perugorria: Ramon y Cajal Program RYC-2015-17755); IKERBASQUE, Basque foundation for Science (M.J. Perugorria and J.M. Banales), Spain; "Junta de Castilla y Leon" (J.J.G. Marin: SA06P17); " Diputacion Foral Gipuzkoa" (J.M. Banales: DFG15/010, DFG16/004; M.J. Perugorria: DFG18/114, DFG19/081), BIOEF (Basque Foundation for Innovation and Health Research: EiTB Maratoia BIO15/CA/016/BD to J.M. Banales), Department of Health of the Basque Country (J.M. Banales: 2017111010; M.J. Perugorria: 2019111024), and Euskadi RIS3 (J.M. Banales: 2016222001, 2017222014, and 2018222029; 2019222054); La Caixa Scientific Foundation (J.M. Banales: HR17-00601); "Fundacion Cientifica de la Asociacion Espanola Contra el Cancer" (AECC Scientific Foundation, to J.M. Banales and J.J.G. Marin); and "Centro Internacional sobre el Envejecimiento", Spain (J.J.G. Marin: OLD-HEPAMARKER, 0348-CIE-6-E). F.J. Caballero-Camino was funded by the Spanish Ministry of Science and Innovation (BES-2014-069148), A. Santos-Laso by the Basque Government (PRE_2018_2_0195), and Pui Y. Lee-Law by the European Association for the Study of the Liver (EASL; Sheila Sherlock Award). The Spanish Ministry of Science and Innovation supported F. P. Cossio: (CTQ2016-80375-P and CTQ2014-51912-REDC) as well as the Basque Government (F.P. Cossio: IT-324-07). I. Rivilla had a postdoctoral contract from the Donostia International Physics Center

    TREM-2 defends the liver against hepatocellular carcinoma through multifactorial protective mechanisms

    Get PDF
    [EN] Objective Hepatocellular carcinoma (HCC) is a prevalent and aggressive cancer usually arising on a background of chronic liver injury involving inflammatory and hepatic regenerative processes. The triggering receptor expressed on myeloid cells 2 (TREM-2) is predominantly expressed in hepatic non-parenchymal cells and inhibits Toll-like receptor signalling, protecting the liver from various hepatotoxic injuries, yet its role in liver cancer is poorly defined. Here, we investigated the impact of TREM-2 on liver regeneration and hepatocarcinogenesis. Design TREM-2 expression was analysed in liver tissues of two independent cohorts of patients with HCC and compared with control liver samples. Experimental HCC and liver regeneration models in wild type and Trem-2-/- mice, and in vitro studies with hepatic stellate cells (HSCs) and HCC spheroids were conducted. Results TREM-2 expression was upregulated in human HCC tissue, in mouse models of liver regeneration and HCC. Trem-2-/- mice developed more liver tumours irrespective of size after diethylnitrosamine (DEN) administration, displayed exacerbated liver damage, inflammation, oxidative stress and hepatocyte proliferation. Administering an antioxidant diet blocked DEN-induced hepatocarcinogenesis in both genotypes. Similarly, Trem-2-/- animals developed more and larger tumours in fibrosis-associated HCC models. Trem-2-/- livers showed increased hepatocyte proliferation and inflammation after partial hepatectomy. Conditioned media from human HSCs overexpressing TREM-2 inhibited human HCC spheroid growth in vitro through attenuated Wnt ligand secretion. Conclusion TREM-2 plays a protective role in hepatocarcinogenesis via different pleiotropic effects, suggesting that TREM-2 agonism should be investigated as it might beneficially impact HCC pathogenesis in a multifactorial manner.Spanish Ministry of Economy and Competitiveness and ’Instituto de Salud Carlos III’ grants (MJP (PI14/00399, PI17/00022 and Ramon y Cajal Programme RYC-2015–17755); JMB (PI12/00380, PI15/01132, PI18/01075, Miguel Servet Programme CON14/00129 and CPII19/00008) cofinanced by ’Fondo Europeo de Desarrollo Regional’ (FEDER); CIBERehd: MJP, JMB and LB), Spain; IKERBASQUE, Basque foundation for Science (MJP and JMB), Spain; ’Diputación Foral de Gipuzkoa’ (MJP: DFG18/114, DFG19/081; JMB: DFG15/010, DFG16/004); BIOEF (Basque Foundation for Innovation and Health Research: EiTB Maratoia BIO15/CA/016/ BD to JMB); Department of Health of the Basque Country (MJP: 2015111100 and 2019111024; JMB: 2017111010), Euskadi RIS3 (JMB: 2016222001, 2017222014, 2018222029, 2019222054, 2020333010) Department of Industry of the Basque Country (JMB: Elkartek: KK-2020/00008) and AECC Scientific Foundation (JMB). AE-B was funded by the University of the Basque Country (UPV/EHU) (PIF2014/11) and by the short-term training fellowship Andrew K Burroughs (European Association for the Study of the Liver, EASL). IL and AA-L were funded by the Department of Education, Language Policy and Culture of the Basque Government (PRE_2016_1_0152 and PRE_2018_1_0184). OS and SK were funded by the Austrian Science Fund (FWF25801-B22, FWF-P35168 to OS and L-Mac: F 6104-B21 to SK). FO and DAM were funded by a UK Medical Research Council programme Grant MR/R023026/1. DAM was also funded by the CRUK programme grant C18342/A23390, CRUK/AECC/AIRC Accelerator Award A26813 and the MRC MICA programme grant MR/R023026/1. JBA is supported by the Danish Medical Research Council, Danish Cancer Society, Nordisk Foundation, and APM Foundation. CJO’R and PM-G are supported by Marie Sklodowska-Curie Programme and EASL Sheila Sherlock postdoctoral fellowships

    Cholangiocarcinoma 2020: the next horizon in mechanisms and management

    Get PDF
    [EN] Cholangiocarcinoma (CCA) includes a cluster of highly heterogeneous biliary malignant tumours that can arise at any point of the biliary tree. Their incidence is increasing globally, currently accounting for ~15% of all primary liver cancers and ~3% of gastrointestinal malignancies. The silent presentation of these tumours combined with their highly aggressive nature and refractoriness to chemotherapy contribute to their alarming mortality, representing ~2% of all cancer-related deaths worldwide yearly. The current diagnosis of CCA by non- invasive approaches is not accurate enough, and histological confirmation is necessary. Furthermore, the high heterogeneity of CCAs at the genomic, epigenetic and molecular levels severely compromises the efficacy of the available therapies. In the past decade, increasing efforts have been made to understand the complexity of these tumours and to develop new diagnostic tools and therapies that might help to improve patient outcomes. In this expert Consensus Statement, which is endorsed by the European Network for the Study of Cholangiocarcinoma, we aim to summarize and critically discuss the latest advances in CCA, mostly focusing on classification, cells of origin, genetic and epigenetic abnormalities, molecular alterations, biomarker discovery and treatments. Furthermore, the horizon of CCA for the next decade from 2020 onwards is highlightedJ.M.B. received EASL Registry Awards 2016 and 2019 (European CCA Registry, ENS-CCA). J.M.B. and M.J.P. were supported by: the Spanish Ministry of Economy and Competitiveness (J.M.B.: FIS PI12/00380, FIS PI15/01132, FIS PI18/01075 and Miguel Servet Programme CON14/00129; M.J.P.: FIS PI14/00399, FIS PI17/00022 and Ramon y Cajal Programme RYC-2015-17755, co-financed by “Fondo Europeo de Desarrollo Regional” (FEDER)); ISCIII CIBERehd; “Diputación Foral de Gipuzkoa” (J.M.B: DFG15/010, DFG16/004), and BIOEF (Basque Foundation for Innovation and Health Research: EiTB Maratoia BIO15/CA/016/BD); the Department of Health of the Basque Country (M.J.P.: 2015111100; J.M.B.: 2017111010), and “Fundación Científica de la Asociación Española Contra el Cancer” (AECC Scientific Foundation) (J.M.B.). J.M.B. and J.W.V. were supported by the European Commission Horizon 2020 programme (ESCALON project 825510). The laboratory of J.B.A. is supported by competitive grants from the Danish Medical Research Council, the Danish Cancer Society, and the Novo Nordisk and A.P. Møller Foundations. J.J.G.M. and R.I.R.M. were supported by the Carlos III Institute of Health, Spain (PI16/00598 and PI18/00428) and were co-financed by the European Regional Development Fund. J.M.B. and J.J.G.M. were supported by the Ministry of Science and Innovation, Spain (SAF2016-75197-R), and the “Asociación Española Contra el Cancer”, Spain (AECC-2017). R.I.R.M. was supported by the “Centro Internacional sobre el Envejecimiento”, Spain (OLD-HEPAMARKER, 0348-CIE-6-E). A.L. received funding from the Christie Charity. M.M. was supported by the Università Politecnica delle Marche, Ancona, Italy (040020_R.SCIENT.A_2018_MARZIONI_M_STRATEGICO_2017). M.S. was supported by the Yale Liver Center Clinical and Translational Core and the Cellular and Molecular Core (DK034989 Silvio O. Conte Digestive Diseases Research Center). C.C. is supported by grants from INSERM, Université de Rennes, INCa, and ITMO Cancer AVIESAN dans le cadre du Plan Cancer (Non-coding RNA in Cancerology: Fundamental to Translational), Ligue Contre le Cancer and Région Bretagne. J.Bruix was supported by grants from Instituto de Salud Carlos III (PI18/00763), AECC (PI044031) and WCR (AICR) 16-0026. A.F. was supported by grants from ISCIII (PI13/01229 and PI18/00542). CIBERehd is funded by the Instituto de Salud Carlos III. V.C., D.M., J. Bridgewater and P.I. are members of the European Reference Network - Hepatological Diseases (ERN RARE-LIVER). J.M.B. is a collaborator of the ERN RARE-LIVER

    Novel equation to determine the hepatic triglyceride concentration in humans by MRI: diagnosis and monitoring of NAFLD in obese patients before and after bariatric surgery

    Get PDF
    Background: Non-alcoholic fatty liver disease (NAFLD) is caused by abnormal accumulation of lipids within liver cells. Its prevalence is increasing in developed countries in association with obesity, and it represents a risk factor for non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma. Since NAFLD is usually asymptomatic at diagnosis, new non-invasive approaches are needed to determine the hepatic lipid content in terms of diagnosis, treatment and control of disease progression. Here, we investigated the potential of magnetic resonance imaging (MRI) to quantitate and monitor the hepatic triglyceride concentration in humans. Methods: A prospective study of diagnostic accuracy was conducted among 129 consecutive adult patients (97 obesity and 32 non-obese) to compare multi-echo MRI fat fraction, grade of steatosis estimated by histopathology, and biochemical measurement of hepatic triglyceride concentration (that is, Folch value). Results: MRI fat fraction positively correlates with the grade of steatosis estimated on a 0 to 3 scale by histopathology. However, this correlation value was stronger when MRI fat fraction was linked to the Folch value, resulting in a novel equation to predict the hepatic triglyceride concentration (mg of triglycerides/g of liver tissue = 5.082 + (432.104 * multi-echo MRI fat fraction)). Validation of this formula in 31 additional patients (24 obese and 7 controls) resulted in robust correlation between the measured and estimated Folch values. Multivariate analysis showed that none of the variables investigated improves the Folch prediction capacity of the equation. Obese patients show increased steatosis compared to controls using MRI fat fraction and Folch value. Bariatric surgery improved MRI fat fraction values and the Folch value estimated in obese patients one year after surgery. Conclusions: Multi-echo MRI is an accurate approach to determine the hepatic lipid concentration by using our novel equation, representing an economic non-invasive method to diagnose and monitor steatosis in humans.This research was supported by grants from: the Spanish Ministry of Economy and Competitiveness (J. M. Banales: FIS PI12/00380, R. Jimenez: FIS PI10/01984), the Spanish Carlos III Health Institute (ISCIII) (J. M. Banales, L. Bujanda: Ciberehd), and the Spanish Association Against Cancer (AECC: J. M. Banales, L. Bujanda); the Department of Industry of the Basque Country (J. M. Banales: SAIO12-PE12BN002); the Health Department of the Basque Country (R. Jimenez: Exp 2010111043); the Department of Education, Universities and Research of the Basque Country (M. P. Portillo: IT-572-13), and the University of the Basque Country (M. P. Portillo: UFI 11/32, ELDUNANOTEK). CIBER-ESP, CIBER-obn, and CIBERehd are funded by the Spanish Carlos III Health Institute (ISCIII)

    Patients with Cholangiocarcinoma Present Specific RNA Profiles in Serum and Urine Extracellular Vesicles Mirroring the Tumor Expression: Novel Liquid Biopsy Biomarkers for Disease Diagnosis

    Get PDF
    Cholangiocarcinoma (CCA) comprises a group of heterogeneous biliary cancers with dismal prognosis. The etiologies of most CCAs are unknown, but primary sclerosing cholangitis (PSC) is a risk factor. Non-invasive diagnosis of CCA is challenging and accurate biomarkers are lacking. We aimed to characterize the transcriptomic profile of serum and urine extracellular vesicles (EVs) from patients with CCA, PSC, ulcerative colitis (UC), and healthy individuals. Serum and urine EVs were isolated by serial ultracentrifugations and characterized by nanoparticle tracking analysis, transmission electron microscopy, and immunoblotting. EVs transcriptome was determined by Illumina gene expression array [messenger RNAs (mRNA) and non-coding RNAs (ncRNAs)]. Differential RNA profiles were found in serum and urine EVs from patients with CCA compared to control groups (disease and healthy), showing high diagnostic capacity. The comparison of the mRNA profiles of serum or urine EVs from patients with CCA with the transcriptome of tumor tissues from two cohorts of patients, CCA cells in vitro, and CCA cells-derived EVs, identified 105 and 39 commonly-altered transcripts, respectively. Gene ontology analysis indicated that most commonly-altered mRNAs participate in carcinogenic steps. Overall, patients with CCA present specific RNA profiles in EVs mirroring the tumor, and constituting novel promising liquid biopsy biomarkers.This research was funded by Spanish Carlos III Health Institute (ISCIII) [J.M. Banales (FIS PI15/01132, PI18/01075 and Miguel Servet Program CON14/00129; M.J. Perugorria: PI14/00399, PI17/00022; J.J.G. Marin: FIS PI16/00598 and PI19/00819; P.M. Rodrigues: Sara Borrell CD19/00254] cofinanced by “Fondo Europeo de Desarrollo Regional” (FEDER); CIBERehd (ISCIII): J.M. Banales, M.J. Perugorria, L. Bujanda and J.J.G. Marin; Spanish Ministry of Economy and Competitiveness (M.J. Perugorria: Ramon y Cajal Programme RYC-2015-17755); AMMF (J.M. Banales and P.M. Rodrigues 2019/202); PSC Partners US (J.M. Banales); PSC Supports UK (J.M. Banales: 06119JB); Horizon 2020 (J.M. Banales: H2020 ESCALON project: H2020-SC1-BHC-2018-2020); IKERBASQUE, Basque foundation for Science (M.J. Perugorria and J.M. Banales), Spain; “Junta de Castilla y Leon” (J.J.G. Marin: SA06P17); “Diputación Foral Gipuzkoa” (J.M. Banales: DFG15/010, DFG16/004; M.J. Perugorria: DFG18/114, DFG19/081), BIOEF (Basque Foundation for Innovation and Health Research: EiTB Maratoia BIO15/CA/016/BD to J.M. Banales), Department of Health of the Basque Country (L. Bujanda: 2013111173; J.M. Banales: 2017111010) and Euskadi RIS3 (J.M. Banales: 2016222001, 2017222014, 2018222029; 2019222054). La Caixa Scientific Foundation (J.M. Banales: HR17-00601). “Fundación Científica de la Asociación Española Contra el Cáncer” (AECC Scientific Foundation, to J.M. Banales and J.J.G. Marin). “Centro Internacional sobre el Envejecimiento”, Spain (R.I.R. Macias: OLD-HEPAMARKER, 0348-CIE-6-E). A. Lapitz and A Santos-Laso were funded by the Basque Government (PRE_2018_2_0195 and PRE_2015_1_0126, respectively). J.B. Andersen is supported by the Danish Medical Research Council, Danish Cancer Society, Novo Nordisk Foundation, and A.P. Møller Foundation. C.J. O’Rourke is supported by Marie Skłodowska -Curie Program
    corecore